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Abstract. Previous work on the retrodictive theory of direct detection is extended to cover the homodyne
detection of coherent optical signal states |α〉 and |−α〉. The retrodictive input state probabilities are
obtained by the application of Bayes’ theorem to the corresponding predictive distributions, based on
the probability operator measure (POM) elements for the homodyne process. Results are derived for
the retrodictive information on the complex amplitude of the signal field obtainable from the difference
photocount statistics of both 4-port and 8-port balanced homodyne detection schemes. The local oscillator
is usually assumed much stronger than the signal but the case of equal strengths in 4-port detection is also
considered. The calculated probability distributions and error rates are illustrated numerically for values
of signal and local oscillator strengths that extend from the classical to the quantum regimes.

PACS. 42.50.-p Quantum optics – 42.50.Dv Nonclassical states of the electromagnetic field, including en-
tangled photon states; quantum state engineering and measurements – 03.67.Hk Quantum communication

QICS. 01.10.+i Encoding, processing and transmission of information via physical systems

1 Introduction

The last fifty years have been characterised by rapid tech-
nological developments in the field of digital communica-
tions and digital data processing. Light-wave communica-
tion is now the preferred technology in many applications,
and it relies on the success of optical fibre networks [1].
Although today’s information systems operate within the
domain of classical physics, quantum-mechanical signals
can also be processed and transported. The properties of
quantum systems can also be exploited in quantum cryp-
tography to provide secure communications in optical fibre
systems [2]. The essence of the communication problem is
to determine the transmitted message from a knowledge
only of the received signal. For this purpose the rigor-
ous retrodictive formalism of quantum mechanics, where
a state is assigned on the basis of the outcome of the mea-
surement, can be adopted [3–6].

In optical communications, signals are constituted by a
sequence of single bits of information, denoted by 0 or 1.
Conventional optical communication systems operate in
the classical multi-photon regime, where a received “1”
may be represented by optical pulses containing for ex-
ample about 10000 photons [2]. Coherent optical commu-
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nications systems may use field modulation (amplitude,
phase or frequency) instead of intensity modulation [1].
They employ highly coherent sources to produce binary
signal pulses that can be represented, for example, by two
coherent states with different well-defined phases as |α〉
and |−α〉. It is possible to measure the complex ampli-
tude of the signal optical field by optical homodyne or
heterodyne detection. In particular, homodyne detection
is a fundamental method for the measurement of phase-
sensitive properties of light [7–10]. In conventional four-
port homodyne detection the local oscillator is prepared in
an intense coherent state, so that the beam-splitter output
coherent states are large in amplitude and approximately
equal in intensity, allowing for their detection as photocur-
rents. In a balanced homodyne-detection scheme (using a
50:50 beam splitter) the quantum properties of the in-
put field can be extracted from the difference photocount
probability distribution [11–13]. Homodyne measurement
techniques in the quantum regime with small amplitude
(quantum-mechanical) coherent states, have also been in-
vestigated [12,13]; they have been applied for measuring
statistical properties of the phase difference of two weak
coherent fields [14,15]. Note that weak coherent fields
are also used in some quantum cryptographic interference
schemes, based (similarly to homodyne detection) on the
coupling of two signals at a beam-splitter [2,16,17].



130 The European Physical Journal D

In this paper we extend our previous work on direct de-
tection [6] to develop the predictive quantum-mechanical
description of a coherent field measured by means of ho-
modyne detection techniques, with the derivation of the
probability operator measure (POM) elements describ-
ing the measurement process. Then with the retrodictive
method derived from Bayes’ theorem we calculate, given
the result of the measurement, the input state probabil-
ities for the information bits of a communication system
described by the coherent field states |α〉 or |−α〉 only. The
aim of these calculations is to apply a simple and direct
procedure for deriving information about the nature of the
binary signal sent into the communication channel. Thus,
as in [6], we do not use the pure quantum-mechanical
retrodictive formalism, but we rather use retrodiction as
a calculational tool for the evaluation of the signal input
state probabilities.

In Section 2, we consider four-port homodyne detec-
tion in detail and we derive the probability distributions
for measurements of the photocount difference between
the two output arms of the beam-splitter. Two interpre-
tations for the quantum-mechanical descriptions of the
signal evolution and detection process are given in Sec-
tion 2.1. The output distributions corresponding to the
measurement of the binary signal, together with the bit
error rate in reception are shown in Section 2.2. We also
calculate the retrodictive conditional probabilities associ-
ated with the input field states for conventional homo-
dyne detection, and the probability of error occurring
in the retrodiction process. Numerical results extending
from the classical to the quantum regime are presented.
The quantum-mechanical measurement of a coherent sig-
nal state in eight-port homodyne detection is treated in
detail in Section 3, where the principal aim is to show
how to derive the correct POM elements associated with
the measurement outcomes. Two different approaches for
this are considered in Sections 3.2 and 3.3 respectively.
The input state retrodictive probabilities are given at the
end of Section 3.3, and some comments on the similarity
between the eight-port homodyne detection and the het-
erodyne detection schemes are presented. In Section 4, we
present our conclusions.

2 Four-port homodyne detection

We consider a typical balanced four-port homodyne-
detection scheme as shown in Figure 1. The signal field
(operator âs) and the local oscillator field (b̂l), assumed
to have the same frequency, are superimposed by a beam-
splitter; the superimposed light in the two output channels
(described by the operators âout and b̂out) is recorded by
two photodetectors (D1 and D2), and a correlator is used
to derive the difference statistics of the recorded events.
For a symmetric beam-splitter, the output field operators
can be written as

âout =
1√
2

(
âs + ib̂l

)
, b̂out =

1√
2

(
b̂l + iâs

)
, (1)

Fig. 1. Experimental
scheme for balanced ho-
modyne detection.

and in the ideal case of perfect detection, the operator for
the photocount difference is simply

m̂dif ≡ m̂1 − m̂2 = b̂†outb̂out − â†outâout

→ i |β| (âse−iϕl − â†se
iϕl

)
= X̂. (2)

In the last part of (2) b̂l has been replaced by a c-number
(b̂l → |β| eiϕl) assuming, as in conventional homodyne de-
tection, the local oscillator to be very strong [13,18], and
X̂ denotes a quadrature operator for the signal field1.

2.1 Output probability distributions and measurement
POM elements

The photocount difference statistics can be derived from
the joint photon-number probability distribution at the
output of the beam-splitter. From the quantum theory of
photodetection the latter is given by [13,19],

Pm1,m2 =
〈

:
(η1m̂1)

m1

m1!
e−η1m̂1

(η2m̂2)
m2

m2!
e−η2m̂2 :

〉
, (3)

where m1, m2 are the counts recorded by the detectors D1

and D2 with quantum efficiencies η1 and η2 respectively.
In general for an input coherent signal field |α〉 with α =
|α| eiϕs , and a local coherent oscillator field |β〉 with β =
|β| eiϕl , equation (3) leads to

Pm1,m2 =
(η1θ1/2)

m1

m1!
e−η1

θ1
2

(η2θ2/2)
m2

m2!
e−η2

θ2
2 , (4)

where

θ1,2 = |α|2 + |β|2 ± 2 |α| |β| sin (ϕl − ϕs) , (5)

the subscript “1” going with the “+” and the subscript “2”
with the “–”. In the following we consider η1 = η2 = η.
The distribution of the difference events mdif = m1 −m2

(<0 or >0) can be derived from (4) and can be written

1 Note that the operator X̂ introduced here is in fact propor-
tional to the standard definition of quadrature operator that
can be found in the literature (e.g. i(âe−iϕ − â†eiϕ)/2), since
strictly the signal field is independent of |β|.
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to good approximation in the limit |β|2 � |α|2 (which we
assume from now on), as [13]:

P pred
hom (mdif ) ∼= 1√

2πη |β|2

× exp

[
− [mdif − 2η |α| |β| sin (ϕl − ϕs)]

2

2η |β|2
]
. (6)

The mean and the variance of the photocount difference
distribution can be straightforwardly derived as

〈mdif 〉 = i〈β|〈α|b̂†l âs − â†sb̂l|α〉|β〉
= 2η|α||β| sin(ϕl − ϕs), (7)

and

(∆mdif )2 = −〈β|〈α|(b̂†l âs − â†sb̂l)
2|α〉|β〉

+ (〈β|〈α|b̂†l âs − â†sb̂l|α〉|β〉)2
= η2(|α|2 + |β|2) ∼= η2|β|2. (8)

From now on we will mainly consider η = 1, with some
comments on the case of imperfect detection in the discus-
sions of Sections 2.2.1 and 2.2.2. In the predictive formal-
ism P pred

hom (mdif ) represents the conditional probability of
recording mdif difference photocounts, when the coherent
state |α〉 is sent into the homodyne detector. We also de-
note this probability by P pred

hom (mdif |α ). Saying that the
result of the measurement gives a number mdif of counts,
is equivalent to considering the measurement procedure
formally described by the following POM element

Π̂mdif
= |mdif 〉 〈mdif | . (9)

The measurement is treated as a simple von Neumann
measurement giving the eigenvalues of the photon-number
difference operator m̂dif , and where the POM ele-
ments are thus projectors in the photon-number differ-
ence states basis. In the quantum-mechanical formalism,
P pred

hom (mdif |α ) can be written as [5]

P pred
hom (mdif |α ) = Trls

[
Ûhomρ̂s ⊗ ρ̂lÛ

†
homΠ̂mdif

]
, (10)

where the density operators are ρ̂s = |α〉 〈α|, and ρ̂l =
|β〉 〈β|. The unitary evolution operator denoted by Ûhom

describes the interaction of the signal field with the lo-
cal oscillator field at the beam-splitter. The effect of the
measurement procedure on the signal field, involving the
interaction of the latter with the coherent oscillator field,
is absorbed into the evolution process of the signal and
thus into the evolution of the operator ρ̂s. In this picture,
the effective measurement device could be represented by
an abstract photodetector recording the number of differ-
ence counts.

An alternative description of the coherent state mea-
surement performed with the four-port homodyne tech-
nique can be used. We can look at expression (6) as the
probability distribution for the quadrature field operator

in (2). The quadrature operator X̂ depends on the local
oscillator field amplitude and phase. The eigenstates |X〉
of X̂ form a complete set of states and we can introduce,
in analogy with (9), the following POM element

Π̂X = |X〉 〈X | . (11)

We thus implicitly describe the measurement process us-
ing this POM element that contains the whole effect of
homodyne detection. In other words, with respect to equa-
tion (9), here the information about the interaction be-
tween the local oscillator field and the coherent signal
field is directly reflected in equation (11). The measured
quantity is now the quadrature operator (2), and for a
correct derivation of the corresponding probability distri-
bution at the output of the homodyne-detection appara-
tus, we simply assume that there is no evolution of the
signal field before the measurement. In this case, when
we say “homodyne-detection apparatus”, we imagine that
the system represented by the beam-splitter, the local os-
cillator field entering from one of the two input channels,
the two detectors and the correlator, constitute the mea-
surement device as a whole, into which the signal field is
simply fed.

In analogy with equation (10), the predictive condi-
tional probability of measuring X (eigenvalue of the op-
erator X̂) for an input state |α〉, is now

P pred
hom (X |α ) = Trs

[
ρ̂sΠ̂X

]
, (12)

where Π̂X is given by equation (11). Comparison of equa-
tion (12) with equation (10) shows that equation (11) can
be rewritten as

Π̂X = Trl

[
ρ̂lÛ

†
homΠ̂mdif

Ûhom

]
. (13)

Thus we also have P pred
hom (X |α ) = |〈α | X〉|2, where

〈α | X〉 ≡ ψα (X) is the X quadrature representation of
the coherent state |α〉 [20,21]. By using the expansion of
|α〉 in terms of photon number states (12) can be writ-
ten as

P pred
hom (X |α ) =

1√
2π |β|2

× exp

[
− (X − 2 |α| |β| sin (ϕl − ϕs))

2

2 |β|2
]
, (14)

in accordance with previous results [13,20,21], and it can
also be obtained from (6) via the equivalence (2) between
mdif and X . The above expression is a Gaussian distri-
bution in quadrature space, equivalent to (6) and char-
acterised by mean 〈X〉 and variance (∆X)2 equal to (7)
and (8) respectively (with η = 1).

Finally we note that the quadrature state |X〉 is similar
to a squeezed state with squeezing parameter s→ ∞. We
recall that the single mode squeezed state |αs, ζ〉, with
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ζ = s eiϑ, satisfies the eigenvalue equation [11,20,21]
(
âs cosh s+ â†se

iϑ sinh s
) |αs, ζ〉 =(

αs cosh s+ α∗
se

iϑ sinh s
) |αs, ζ〉 , (15)

where |αs, ζ〉 can also be written in terms of the Glauber
displacement operator

D̂ (αs) = eαsâ†
s−α∗

s âs (16)

and the single-mode squeeze operator, acting on the signal
mode vacuum

Ŝ(1) (ζ) = e(−ζâ†2
s +ζ∗â2

s)/2, (17)

as [20]

|αs, ζ〉 = D̂ (αs) Ŝ(1) (ζ) |0〉s
= eαsâ†

s−α∗
s âse(−ζâ†2

s +ζ∗â2
s)/2 |0〉s . (18)

By rewriting (2) in the form

X̂ = i |β| e−iϕl
(
âs − â†se

2iϕl
)
, (19)

the measured quantity in the homodyne detection process
can thus be represented, apart from the factor i |β| e−iϕl

(which is known), by the operator âs − â†se
2iϕl . We see

that the latter turns out to be proportional to the squeez-
ing operator acting on |αs, ζ〉 in (15), when s → ∞ and
with ϑ = 2ϕl + π. The measurement can therefore be
represented by projection onto the infinitely squeezed co-
herent state characterised by a complex amplitude αs and
by a phase angle 2ϕl + π determined by the phase of the
coherent local oscillator [7,9].

2.2 Prediction and retrodiction for conventional
homodyne detection

We now consider the four-port homodyne detection pro-
cess at the output of a perfect communication channel,
through which a binary coherent signal is sent. If the in-
put signal is phase modulated, the information bits “0”
and “1” contained in a train of pulses can be formally
represented, for example, by the coherent states |α〉 and
|−α〉. We assume that these bits are sent with equal prior
probability. Because of the dependence of the output prob-
ability distributions (6) or (14), on the sine of the phase
difference ∆ϕ between the local oscillator field and the
signal field, we can choose ϕs and ϕl such that

∆ϕ = ϕl − ϕs = π/2 or ∆ϕ = ϕl − ϕs = −π/2. (20)

One example would be to take α real and β = i |β| when
the states |α〉 and |−α〉 produce these two values of ∆ϕ.
The probability distributions (6) and (14) are then sym-
metric and in principle distinguishable at reception.

For simplicity, the prediction and the retrodiction pro-
cess applied to the system under study will be discussed
in this section by using the output distribution for the dif-
ference of photocounts mdif . We should nevertheless keep
in mind the perfect equivalence between (6) and (14).

2.2.1 Prediction and bit error rate in reception

We assume that the receiver can record the difference
events mdif . In conventional homodyne detection the lo-
cal oscillator is characterised by a mean photon-number
〈nl〉 = |β|2 much larger than the mean number of photons
of the signal bits, 〈ns〉 = |α|2. The information about
the signal phase is contained in the features of the out-
put probability distributions associated respectively with
the bit “0” and the bit “1”, and which can be straight-
forwardly derived from equation (6) by taking into ac-
count equations (20). It can be easily checked by using
equations (7) and (8) that ∆mdif/〈mdif 〉 is independent
of |β|, reflecting thus into the fact that we have a very poor
discrimination of the two Gaussian distributions when
|α|2 
 1. This implies that this kind of homodyne de-
tection scheme is not suitable when the optical signal is
extremely weak.

The performance of a digital communication system is
measured by the probability of error per bit in reception,
also called bit error rate (BER). For an on-off intensity
modulated signal at the input of the optical transmitting
device, if P1 is the probability of mistaking “1” for “0”,
and P0 is the probability of mistaking “0” for “1”, and if
the two bits are equally likely to be transmitted, then the
BER is given by [1,22,23]:

BER =
1
2
(P0 + P1). (21)

A standard BER for classical information systems is
10−9 [1,2,24]. By analogy, in the context of homodyne
detection, we denote by P1 the probability of mistaking
the state |−α〉 for |α〉, and by P0 the probability of mis-
taking |α〉 for |−α〉. Then, treating in first approximation
mdif as a continuous variable, we can write in general

P0 =

0∫

−∞
P pred

hom (mdif |α ) dmdif

and P1 =

+∞∫

0

P pred
hom (mdif |−α ) dmdif . (22)

The photocount difference distributions are perfectly sym-
metric with respect to the axis mdif = 0, so P0 = P1, and
in the case of perfect detection [24],

BER = P0 = P1

=
1√

2π |β|2

∞∫

0

exp

[
− (mdif + 2 |α| |β|)2

2 |β|2
]
dmdif

=
1
2
erfc

(
2 |α|√

2

)
. (23)

Denoting by Err the maximum required value for the bit
error rate in reception (Err 
 1), we can impose

BER =
1
2
erfc

(
2 |α|√

2

)
≤ Err. (24)



O. Jedrkiewicz et al.: Retrodiction for coherent communication with homodyne or heterodyne detection 133

This condition is independent of the amplitude of the lo-
cal oscillator field. If the phase-modulated signal must be
received with a probability of error Err = 10−9, we find
for the minimum number of photons required in the coher-
ent signal state, 〈ns〉min = |α|2min

∼= 9, in accordance with
previous results [24]. It is easy to check that for η �= 1, the
equivalent of (24) is

BER =
1
2
erfc

(
2
√
η |α|√
2

)
≤ Err, (25)

leading, when Err = 10−9, to 〈ns〉min = |α|2min
∼= 9/η.

Therefore, for a given BER in reception, the lower the de-
tectors quantum efficiency, the higher must be the number
of photons in the input coherent state, this scaling linearly
with 1/η.

2.2.2 Retrodiction and probability of error

The outcome of the single measurement performed by the
photodetectors and processed by the correlator for each
information bit sent and coupled with the local oscillator
at the beam-splitter, gives a certain value formdif . We can
retrodictively deduce from this value the probability that
the signal state |α〉 (formally bit “0”) or |−α〉 (formally
bit “1”), has been sent through the detection device. We
consider that the mean number of photons 〈ns〉 contained
in the “0” or in the “1” bit pulse, the mean number of
photons 〈nl〉 of the local oscillator and the phase differ-
ence ∆ϕ, are known. Assuming then that the two bits of
information “0” and “1” have the same transmission prob-
ability, we can write from Bayes’ theorem the normalised
retrodictive conditional probabilities for this system, as

P retro
hom (±α |mdif ) =

P pred
hom (mdif |±α)

P pred
hom (mdif |α ) + P pred

hom (mdif |−α)
,

(26)
where P pred

hom (mdif |α ) and P pred
hom (mdif |−α ) are obtained

from (6). The expressions (26) depend on the measure-
ment events mdif . If mdif = 0 we have as expected,

P retro
hom (α |mdif ) = P retro

hom (−α |mdif ) = 1/2, (27)

independently of the amplitudes of the signal and lo-
cal oscillator fields. The retrodictive conditional proba-
bility (26) is plotted in Figure 2, as a function of mdif

and for different values of |α|2 and |β|2.
The probability of error in retrodicting the signal

states |α〉 and |−α〉 depends on the value ofmdif . It can be
shown that the fact that the bit error rate in the retrodic-
tion process depends on the outcome of the measurement
is similar to the case of direct detection at the output
of an amplifier (in that case for an intensity modulated
signal) [25]. For the homodyne detection system analysed
here, we can say that given a number of recorded difference
countsmdif > 0, the input signal is in principle more likely
to be |α〉. On the other hand ifmdif < 0, the input pulse is
more likely to be |−α〉. Therefore the probability of error

Fig. 2. Retrodictive conditional probability P retro
hom (α |mdif )

as a function of the measurement output mdif , and for (a)
|α|2 = 1, |β|2 = 100, (b) |α|2 = 5, |β|2 = 100, (c) |α|2 = 10,
|β|2 = 100, and (d) |α|2 = 20, |β|2 = 105.

in retrodicting the state |α〉 (situation where ∆ϕ = π/2)
can be represented by P retro

hom (−α |mdif ), while the proba-
bility of error in retrodicting the state |−α〉 (∆ϕ = −π/2)
can be represented by P retro

hom (α |mdif ).
If we need the BER in retrodiction to be smaller than

a fixed quantity Err 
 1, we can write when mdif > 0,
P retro

hom (−α |mdif ) ≤ Err, and then from (26) and with
the use of (6), we find

mdif
|α|
|β| ≥

1
4

ln
(

1 − Err

Err

)
. (28)

Alternatively whenmdif < 0, imposing P retro
hom (α |mdif ) ≤

Err, leads to the condition

mdif
|α|
|β| ≤ −1

4
ln

(
1 − Err

Err

)
. (29)

It is worth noting here that equations (28) and (29) turn
out to be independent of the detectors quantum efficiency,
in contrast with (25). Moreover, contrary to (25), the ex-
pressions (28) and (29) depend on the ratio of the signal
field amplitude to the local oscillator field amplitude; nev-
ertheless they have been derived in the limit |β|2 � |α|2.
Similar to what can be found for direct detection in the
amplifier case [25], there is here inevitably a range of val-
ues of mdif , for which the probability of making a mistake
when “deciding” which of the two bits of information con-
stituted the signal is close to 1/2. Nevertheless we expect
that the difference photocounts that do not satisfy equa-
tions (28) and (29) are associated with the overlap region
between the left tail and the right tail of P pred

hom (mdif |α )
and P pred

hom (mdif |−α ) respectively. Thus they have a very
small probability of being recorded. Error probabilities for
retrodicting the signal states |α〉 and |−α〉, are plotted
respectively at the top and bottom of Figure 3, in two
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Fig. 3. Bit error rates in the retrodiction of the input states |α〉
(top) and |−α〉 (bottom) for |α|2 = 10 and |β|2 = 100 (cases
a, c), and for |α|2 = 20 and |β|2 = 105 (cases b, d). The mea-
surement is characterized by a mean value of difference counts
respectively given by 〈mdif 〉 = 63 (a), 〈mdif 〉 = 2828 (b),
〈mdif 〉 = −63 (c), and 〈mdif 〉 = −2828 (d).

different cases. For values of mdif falling around the mean
value 〈mdif 〉, we find here a BER in retrodiction 
10−15.

2.2.3 Prediction and retrodiction for equal amplitude signal
and local oscillator fields

Huttner and coworkers have shown that an optimal error-
free discrimination between two coherent states |α〉 and
|−α〉 can be performed using a 50:50 beam-splitter to su-
perpose the field mode known to be in one of these states
with a mode prepared in the coherent state |iα〉 [16,17].
This situation was considered in the context of quantum
cryptography experiments based on the transmission of
weak coherent states. By means of the formalism described
above we can derive the difference statistics at the output
of the four-port homodyne detector schematised in Fig-
ure 1 (also equivalent to the output of an interferometer as
used in quantum cryptographic protocols), and the retro-
dictive probabilities for the input states, in the case where
|α|2 = |β|2. The theory applies for a general value of the
amplitude |α|. The signal information bits are represented
by |α〉 and |−α〉 and are coupled at the beam-splitter to
the local oscillator state |iα〉. The expression for the joint
probability distribution (4) can be used, leading, in the
case of perfect detection to

Pm1,m2 =
(θ1/2)

m1

m1!
e−

θ1
2

(θ2/2)
m2

m2!
e−

θ2
2 , (30)

where now θ1,2 = 2 |α|2 ± 2 |α|2 sin∆ϕ, and the two pos-
sible values for ∆ϕ are as in equation (20). If the input
signal state is |±α〉, we find from (30) P pred

hom (mdif ≥ 0 |α )
(with mdif = m1) and P pred

hom (mdif ≤ 0 |−α ) (with

Fig. 4. Difference photocounts statistics corresponding to in-
put signal states |α〉 (full curve) and |−α〉 (dashed curve), plot-
ted for |α|2 = |β|2 = 1 (top) and |α|2 = |β|2 = 10 (bottom).

mdif = −m2) to be Poissonian distributions charac-
terised by mean and variance given respectively by ±2 |α|2
and 2 |α|2, in accordance with (7) and (8). Note that if
the intensities of the optical signal and local oscillator are
high, and thus |α|2 � 1, they are well approximated by
Gaussian forms similar to (6) but with twice the vari-
ance (=2 |α|2).

It can be easily shown using (1) that the interference
process between the state |α〉 or |−α〉, and the state |iα〉,
transforms the input state |α〉s |iα〉l or |−α〉s |iα〉l into the
output state

∣∣i√2α
〉
1
|0〉2 or |0〉1

∣∣−√
2α

〉
2
, as previously

noticed [16,17]. As a consequence, when photocounts are
registered in one of the two (perfect) detectors, an unam-
biguous determination of the original state occurs at re-
ception. The probability distributions P pred

hom (mdif ≥ 0 |α )
and P pred

hom (mdif ≤ 0 |−α ) are plotted in Figure 4 as func-
tions of mdif for |α|2 = 1 and |α|2 = 10. The two cor-
responding curves are in this case perfectly separated, in
contrast to the case |β|2 � |α|2, and they only overlap at
mdif = 0. The latter thus remains an uncertainty point for
the discrimination between the two output distributions.
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In this case the BER in reception is simply given by

BER = P pred
hom (mdif = 0 |α )

= P pred
hom (mdif = 0 |−α ) = e−2|α|2 . (31)

This probability of error is very small in the limit |α|2 � 1.
Note that the interference scheme discussed here could
constitute a quantum cryptography experimental set-
up [2,17], rather than being part of ordinary communica-
tion networks. In quantum cryptography, weak coherent
signals are usually used for the quantum key distribu-
tion process, and measurements giving mdif = 0 can
be discarded. In that context, when |α|2 ∼= 0.1 we have
BER = 0.82, in accordance with the typical rate of dis-
carded bits [2].

In the predictive approach, when input signal states
|α〉 or |−α〉 are coupled at a 50:50 beam-splitter to a local
oscillator described by |iα〉, any outcome of the measure-
ment that excludes the result mdif = 0, gives a determin-
istic answer to the problem of knowing which of the two
bit states |α〉 or |−α〉 constituted the optical signal. Cal-
culation of the retrodictive input state preparation proba-
bilities is thus straightforward. In fact using (26) we find,
as expected,

P retro
hom (α |mdif < 0) = 0, P retro

hom (−α |mdif < 0) = 1,
(32)

P retro
hom (α |mdif > 0) = 1, P retro

hom (−α |mdif > 0) = 0,
(33)

and

P retro
hom (α |mdif = 0) = P retro

hom (−α |mdif = 0) = 1/2.
(34)

At the end of Section 2.2.2 we have emphasised that, when
|α|2 
 |β|2 and |α|2 
 1, the homodyne detection scheme
illustrated is not suitable for a low-error discrimination
process at the output, and as a consequence unsuitable
for the uncertainty-free determination of which of the two
states |α〉 or |−α〉 represented the optical signal, by retro-
dicting the result of the measurement. On the other hand,
the contrasting case where |α|2 = |β|2 can give, as shown
here, good results for these purposes. Nevertheless if the
amplitudes of the signal and local oscillator fields are very
small, the probability of obtaining the (unwanted) mea-
surement outcome mdif = 0 is e−2|α|2 ≈ 1 − 2 |α|2, thus
very close to one. A system where |α|2 = |β|2 � 1 then
corresponds to the ideal situation for a correct determi-
nation of the input signal using retrodiction, with a low
probability of error.

Finally in Figure 5, we have plotted the behaviours
of P retro

hom (α |mdif ) as a function of the coherent signal
amplitude when |β|2 = 105 and as a function of the local
oscillator field amplitude when |α|2 = 20, and for two
values of mdif very close to the maximum uncertainty
point mdif = 0. We can see how P retro

hom (α |mdif ) → 1 for
|α|/|β| → 1.

Fig. 5. P retro
hom (α|mdif ) plotted respectively as a function of

|α| for |β|2 = 105 (|β| ∼= 316) (top) and as a function of |β| for
|α|2 = 20 (|α| ∼= 4.5) (bottom). The full curves correspond to
mdif = 1 and the dashed curves correspond to mdif = 5.

3 Eight-port homodyne detection
(and heterodyne detection)

The principal aim of this section is to describe carefully
the quantum-mechanical measurement of a coherent sig-
nal field for eight-port homodyne detection, and to derive
the POM element associated with its outcome. The dif-
ferences between this detection scheme and four-port ho-
modyne measurements are pointed out. At the end of the
section we give the expressions for the retrodictive con-
ditional probabilities that can be calculated in order to
obtain information on a binary phase-modulated coherent
signal in optical communications. We also comment on
the fact that the quantum-mechanical description of the
measurement made here can also be applied to heterodyne
detection.

3.1 The eight-port homodyne detection process

In Figure 6 a homodyne detector scheme characterised by
four input ports and four output ports [10,11,26] is il-
lustrated. Only two of the input ports are excited, one
by the signal field and the other by the local oscillator
field. The notations for the signal and local oscillator (or
probe) fields annihilation operators are identical to those
of Figure 1. The operators â3, â4 are associated with the
unexcited input modes, and d̂1, d̂2, d̂3 and d̂4 characterise
the output modes of the apparatus. In this case there are
four detectors and although the correlators have not been
schematised in the figure, the readings of the detectors
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Fig. 6. Eight-port homodyne detector scheme.

are processed to provide the differences between the pho-
tocounts in adjacent pairs of output arms.

We assume that all the beam-splitters are 50:50 loss-
less beam-splitters. The field input–output relations at the
top-left and bottom-right beam-splitters are respectively
given by
⎧
⎪⎨
⎪⎩
âout

s =
1√
2

(âs + iâ4)

âout
4 =

1√
2

(iâs + â4)
and

⎧
⎪⎨
⎪⎩
b̂out
l =

1√
2
(b̂l + iâ3)

âout
3 =

1√
2
(ib̂l + â3)

.

(35)
Moreover at the output arms 1 and 2, and 3 and 4 respec-
tively, we can write the following general relations

⎧
⎪⎨
⎪⎩
d̂1 =

1√
2

(
âout

s + ieiϕb̂out
l

)

d̂2 =
1√
2

(
ieiϕâout

s + b̂out
l

)

and

⎧
⎪⎨
⎪⎩
d̂3 =

1√
2

(
eiϕ′

âout
3 + iâout

4

)

d̂4 =
1√
2

(
ieiϕ′

âout
3 + âout

4

) (36)

where ϕ and ϕ′ are the phase shifts of the optical field
associated with the path lengths difference l1 − l2 and
l3 − l4 respectively. We choose the path lengths so that
ϕ = π/2 and ϕ′ = π, as usual in this kind of detec-
tion scheme [11]. We can now derive the operators for
the photon-number differences between pairs of outputs,
respectively denoted by m̂12 and m̂34. We assume that the
detectors are perfectly efficient. Combining (36) with (35)
and writing down only the terms that contribute to the
expectation value of m̂12 and to its variance, we easily find

m̂12 = d̂†1d̂1 − d̂†2d̂2 =
1
2

(
â†sb̂l + b̂†l âs

)

+
i

2

(
b̂†l â4 − â†4b̂l

)
+
i

2

(
â†sâ3 − â†3âs

)
+ ... (37)

and

m̂34 = d̂†3d̂3 − d̂†4d̂4 =
i

2

(
â†sb̂l − b̂†l âs

)

− 1
2

(
b̂†l â4 + â†4b̂l

)
+

1
2

(
â†sâ3 + â†3âs

)
+ ... (38)

Note that the expectation values of the last two terms
of (37) and of (38) are zero. These only contribute to the
noise of the measured quantities. In Sections 3.2 and 3.3
we consider the case of conventional eight-port homodyne
detection, and we thus assume that the local oscillator is
a strong coherent field.

3.2 Two-quadrature field measurement and POM
elements

If the intensity of the local oscillator is very strong, we
can replace the annihilation operator b̂l by the c-number
|β| eiϕl , as done in (2). Equations (37) and (38) can then
be rewritten as

m̂12
∼= |β|

2

[
(âs + iâ4) e−iϕl +

(
â†s − iâ†4

)
eiϕl

]
≡ X̂12,

(39)
and

m̂34
∼= −i |β|

2

[
(âs − iâ4) e−iϕl −

(
â†s + iâ†4

)
eiϕl

]
≡ Ŷ34.

(40)
These are the operators describing the measured quan-
tities, of which there are two, in contrast to four-port
homodyne detection. The expression (39) represents the
X quadrature of the operator âs + iâ4, while (40) rep-
resents the Y quadrature of the operator âs − iâ4, both
characterised by phase −ϕl. Note that (39) and (40) are
of the same form as (2) apart from the factor of 1/2. The
operators X̂12 and Ŷ34 satisfy the following commutation
relation [

X̂12, Ŷ34

]
= 0, (41)

indicating that the two field quadratures (39) and (40)
are independent quantum-mechanical variables, and thus
that the quantities X12 and Y34 can be measured simul-
taneously. This occurs because of the inclusion, in the ex-
pressions for m̂12 and m̂34, of the terms in â4 and â†4;
the commutator (41) does not vanish if these terms are
neglected.

Similarly to the four-port homodyne detection, these
independent measurements can be described in two ways:
either they consist of recording the photon-number differ-
ence counts at the output of arms 1 and 2, and at the out-
put of arms 3 and 4 respectively (after the signal field has
interacted with the local oscillator field and with the vac-
uum field modes of the two unexcited input ports, inside
the apparatus shown in Fig. 6); or alternatively the mea-
surement processes can be seen as direct measurements of
the quadratures (39) and (40) (by the “eight-port homo-
dyne detector” interpreted as a whole and constituted by
all the elements of Fig. 6). In this second picture there is
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implicitly no evolution of the coherent signal before the
measurement. From now on in this section we concentrate
on the latter interpretation.

With the modes associated with the operators â3 and
â4 in their vacuum states, the signal and the local oscil-
lator in the coherent states |α〉 and |β〉 respectively, and
using (39) and (40), we find the expectation values of X̂12

and Ŷ34 given by

〈X12〉 = |α| |β| cos (ϕs − ϕl) , 〈Y34〉 = |α| |β| sin (ϕs − ϕl) ,
(42)

and the variances by

(∆X12)2 = 〈X̂2
12〉 − 〈X̂12〉2 ∼= |β|2

2

and (∆Y34)2 = 〈Ŷ 2
34〉 − 〈Ŷ34〉2 ∼= |β|2

2
, (43)

where terms of order |α|2 have been neglected. It is worth
noting that if the quadrature operator (2) measured by the
four-port detection apparatus were written in the same
form as (39) or (40), and thus if it were multiplied by
1/2, the mean and the variance of (14) would be given
by |α| |β| sin (ϕl − ϕs) and |β|2/4 respectively. Then here
in the expressions for (∆X12)

2 and (∆Y34)
2, there is an

extra contribution of |β|2/4 coming from 〈b̂†l â4â
†
4b̂l〉/4 and

contained in 〈X̂2
12〉 and 〈Ŷ 2

34〉. This additional noise with
respect to the four-port homodyne detection is due to the
vacuum field in the unexcited input port at the top-left
beam-splitter of Figure 6. In fact a similar noise contri-
bution given by |α|2/4 (but which has been neglected
in Eq. (43)) actually arises from a term of the form
〈â†sâ3â

†
3âs〉/4, when using (37) and (38), and is due to

the presence of the vacuum field mode at the bottom-
right beam-splitter of the same figure. In comparison to
the four-port detector, the additional measurement capa-
bility of the eight-port detector is therefore gained at the
expense of additional noise, in accordance with previous
results [10,11].

Treating independently the measurements performed
at the output arms 1 and 2, and at the output arms 3
and 4 respectively, and denoting by |X12〉 and |Y34〉 the
eigenvalues of the quadrature operators X̂12 and Ŷ34, we
introduce the two corresponding POM elements as

Π̂X12 = |X12〉 〈X12| and Π̂Y34 = |Y34〉 〈Y34| , (44)

similar to (11) and satisfying the required property of com-
pleteness [20]. The two normalised output probability dis-
tributions characteristic of eight-port homodyne detection
are found to be respectively given by

P pred
hom (X12 |α ) = Trs

[
ρ̂sΠ̂X12

]

=
1√
π |β|2

exp

[
− (X12 − |α| |β| cos (ϕs − ϕl))

2

|β|2
]

(45)

and

P pred
hom (Y34 |α ) = Trs

[
ρ̂sΠ̂Y34

]

=
1√
π |β|2

exp

[
− (Y12 − |α| |β| sin (ϕs − ϕl))

2

|β|2
]
, (46)

where we have set ρ̂s = |α〉 〈α| as in Section 2. The means
and variances of these Gaussian distributions are in accor-
dance with (42) and (43).

Since in the limit of a strong local oscillator, the eight-
port homodyne apparatus permits measurement of the
two quantities (39) and (40), information on both the
amplitude and phase of the coherent signal field can be
extracted. In the following we show that this is the case,
and we derive a single POM element describing the two-
quadrature field measurement as a whole and the corre-
sponding global output probability distribution, as an al-
ternative to (44) and (45, 46). The formalism obtained
can be straightforwardly applied to signal bits “0” and “1”
sent through a communication channel and represented by
the coherent states |α〉 and |−α〉, as described at the be-
ginning of Section 2.2. The retrodictive conditional prob-
abilities can then be directly calculated as will be shown
at the end of the next section.

3.3 Coherent measurement POM and retrodiction

Using (39) and (40), we now introduce the linear combi-
nation

X̂12 + iŶ34 = |β| e−iϕl

(
âs + â†4e

i(2ϕl−π/2)
)
≡ |β| e−iϕlÂ,

(47)
where, as a consequence of the fact that X̂12 and Ŷ34 are
quantum-mechanically independent, Â and Â† commute

[
Â, Â†

]
= 0, (48)

in contrast to the usual bosonic commutation relation. We
can derive the POM element describing the abstract mea-
surement of the observable Â, and we shall see that this
turns out to be a coherent state projector. In order to
work with quantities satisfying the canonical commuta-
tion relations characteristic of the field creation and an-
nihilation operators, we introduce here, in analogy with
equation (15), the two-mode squeezing operator [20]

Âs = âs cosh s+ â†4e
iϑ sinh s, (49)

where now ϑ = 2ϕl − π/2. Note that in contrast to (48)
[
Âs, Â

†
s

]
= cosh2 s− sinh2 s = 1. (50)

The two-mode squeezed state |αs, α4, ζ〉 satisfies the fol-
lowing eigenvalue relation [10,20]

Âs |αs, α4, ζ〉 =
(
αs cosh s+ α∗

4e
iϑ sinh s

) |αs, α4, ζ〉
≡ As |αs, α4, ζ〉 , (51)
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with ζ = seiϑ, s being the squeezing parameter. It is seen
from (47) and (48) that

Â = lim
s→∞

2
es
Âs = âs + â†4e

iϑ, (52)

and the eight-port homodyne detection thus leads to a
measurement associated with the state (51) in the limit
of infinite squeezing. In order to show this, we start by
considering the projector

e2s

4
|αs, α4, ζ〉 〈αs, α4, ζ| . (53)

This is a two-mode state projector, and since port 4 of
Figure 6 is always in the vacuum, we can take the ex-
pectation value of (53) with respect to |0〉4. Thus, using
the fact that the state |αs, α4, ζ〉 can be written in terms
of Glauber operator defined in (16) and of the two-mode
squeeze operator

Ŝ(2) (ζ) = e−ζâ†
sâ†

4+ζ∗âsâ4 , (54)

and using the properties of the latter in accordance
with (3.3.31) and (3.7.52) of [20] we evaluate the following
projection

4〈0|αs, α4, ζ〉 = D̂(αs) 4〈0|D̂(α4)Ŝ(2)(ζ)|0〉s|0〉4
= D̂(αs) 4〈0|e−α∗

4 â4− 1
2 |α4|2sech s

×
∞∑

n=0

[−eiϑ tanh s
]n|n〉s|n〉4. (55)

The expression (55) can be simplified, leading to

4〈0 | αs, α4, ζ〉 = D̂ (αs) sech s exp
[
− 1

2
|α4|2

+
1
2
|α4|2 tanh2 s

] ∣∣α∗
4e

iϑ tanh s
〉

s
(56)

where
∣∣α∗

4e
iϑ tanh s

〉
s

is a coherent state. For s→ ∞ (56)
becomes

4〈0 | αs, α4, ζ〉 =

2e−s exp
[
1
2

(
αsα4e−iϑ − α∗

sα
∗
4e

iϑ
)] ∣∣αs + α∗

4e
iϑ

〉
s
. (57)

The prefactor of the coherent state on the right-hand
side of (57) cancels when this expression is inserted into
the projector defined in (53). The eight-port homodyne
projector that describes the measurement performed by
means of the apparatus of Figure 6 is thus a coherent-
state projector of the form

∣∣αs + α∗
4e

iϑ
〉

s s

〈
αs + α∗

4e
iϑ

∣∣ ≡ |γ〉 〈γ| (58)

conveniently expressed in terms of shorthand γ. The nor-
malized POM element can finally be defined as

Π̂γ =
1
π
|γ〉 〈γ| , (59)

Fig. 7. Phase-space description of the mean values and un-
certainties of the real and imaginary parts for the measured
coherent state in eight-port homodyne detection. The circle
in the first quadrant corresponds to an input signal state |α〉,
while the circle in the third quadrant corresponds to an input
signal state |−α〉.

in accordance with previous results [9], and satisfying the
required normalisation condition [20].

For a measurement performed on a coherent signal |α〉,
the corresponding probability distribution is a phase-space
distribution given by

P pred
hom (γ |α ) = Trs

[
ρ̂sΠ̂γ

]
=

1
π

e−|γ−α|2 , (60)

with properties

〈Re γ〉 = Reα = |α| cosϕs, 〈Im γ〉 = Imα = |α| sinϕs,
(61)

(∆Re γ)2 = (∆Im γ)2 =
1
2
. (62)

The real and imaginary parts of the coherent state γ are
therefore independent Gaussian variables (this is a conse-
quence of the commutation property (48) and thus also
of Eq. (41)), with means given by the real and the imagi-
nary parts of the signal field α, and common variance 1/2.
Note that the latter is twice the coherent state quadrature
value and, similar to that discussed in Section 3.2, the ex-
tra noise contribution (of 1/4) is due to the presence of
the unexcited input port 4 of Figure 6. It is easy to show
that equation (60) can be rewritten as

P pred
hom (γ |α ) = P pred

hom (Re γ |α )P pred
hom (Im γ |α ) , (63)

where Re γ = |γ| cosϕγ and Im γ = |γ| sinϕγ . Here in
contrast to four-port homodyne detection, the simultane-
ous measurement of the amplitude |γ| and of the phase ϕγ

then corresponds to the simultaneous noisy observation of
the amplitude and the phase of the signal, |α| and ϕs. Fig-
ure 7 shows geometrical representations of the measured
coherent state |γ〉, when the signal is given by |α〉 and



O. Jedrkiewicz et al.: Retrodiction for coherent communication with homodyne or heterodyne detection 139

|−α〉 respectively. These representations also give some in-
formation about the projections (in the plane of the field
quadratures) of the probability distributions P pred

hom (γ |α )
and P pred

hom (γ |−α ) respectively (the diameters of the cir-
cles representing here twice the square root of the variance
associated with the measurement).

Experimentally the results of the two measurements
performed at the top-right and bottom-left beam-splitters
of Figure 6 can be therefore processed in order to give
the value of the amplitude and phase of the measured
quantity γ. In the case of a binary communication sys-
tem, we can then associate with the measurement of the
coherent bits of information “0” and “1” (represented by
the states |α〉 and |−α〉), the probability distributions in
the phase-space representation given by P pred

hom (γ |α ) and
P pred

hom (γ |−α ) respectively. Interpreting the complex num-
ber γ as the final outcome of the detection event, and
assuming that the two signal states have the same prob-
ability of occurrence, we can then derive the retrodictive
conditional probabilities for these states, by using Bayes’
theorem in the simple form

P retro
hom (±α |γ ) =

P pred
hom (γ |±α )

P pred
hom (γ |α ) + P pred

hom (γ |−α )
, (64)

where P pred
hom (γ |α ) and P pred

hom (γ |−α ) are obtained as
products of measured output distributions as shown in
equation (63). Similarly to equation (26), these retrodic-
tive probabilities associated with the input signal states
depend on the overlap of the measured probability distri-
butions; but in contrast to four-port homodyne detection,
this overlap occurs in the phase-space representation and
thus in two dimensions, as it appears in Figure 7. We thus
expect that the more the distributions P pred

hom (γ |α ) and
P pred

hom (γ |−α ) are distinguishable and therefore well sepa-
rated, the better the retrodictive expressions (64) lead to
a clear and deterministic result for deciding which of the
two coherent states, |α〉 or |−α〉, constituted the signal.
The additional noise in the eight-port detection scheme
leads to the conclusion that four-port homodyne detec-
tion is more useful for discrimination of the states |α〉 and
|−α〉 in coherent communications.

Finally we comment briefly on the similarity between
the quantum-mechanical description of the eight-port ho-
modyne detection process and the heterodyne detection
process. In heterodyne detection the signal is mixed with a
strong coherent local oscillator (probe) at a beam-splitter,
as in the scheme of Figure 1, and the measurement usu-
ally consists in detecting the resulting field (photocurrent)
at one of the two output ports (or in some cases at both
ports) of the beam-splitter [27]. The difference with ho-
modyne detection is that the frequencies of the local os-
cillator field and the signal field are not the same [18,27].
Three frequency modes eventually contribute to the de-
tection process, these being the probe frequency ωl, the
signal field frequency ωs, and the frequency 2ωl − ωs of
the “image” mode. A filtering procedure is adopted where
the field resulting from the superposition of the signal and

the strong probe is mixed with a classical field, and then
followed by the detection of the d.c. component. The data
can be processed in such a way that both the quadratures
of the signal field can be extracted and thus information
on both the amplitude and phase of the coherent signal
can be obtained, as in eight-port homodyne detection. In
fact it can be shown that the heterodyne apparatus re-
alises the abstract quantum measurement of an operator
having the form âs + â†Ie

iφ, where â†I is the creation op-
erator associated with the image mode, which similarly
to the mode of the input port 4 of Figure 6, is in the
vacuum state. Because of the similarity of âs + â†Ie

iφ to
the operator Â defined in equation (47), we can in fact
describe this measurement process in an identical way to
the one used here for eight-port homodyne detection, in
agreement with previous work [10,27]. The POM element
associated with the outcome of the abstract measurement
in heterodyne detection can again be written as a coherent
state projector, similar to equation (59), and the result-
ing output distribution gives information about both the
amplitude and phase of the coherent signal state.

4 Conclusions

In this paper we have analysed the quantum-mechanical
measurement process of a coherent signal state by means
of four-port and eight-port homodyne detection tech-
niques. In four-port homodyne detection the retrodictive
process that can be used in order to derive information
about the nature of the phase-modulated coherent signal,
has been described in detail. Thus in Section 2 we have
first analysed the predictive output probability distribu-
tions associated with the two signal bits “0” and “1” (rep-
resented by the coherent states |α〉 and |−α〉) with the bit
error rate in reception. We then calculated and studied the
retrodictive conditional probabilities of having the signal
constituted by one of these two bits, given the outcome of
the measurement, with the corresponding probabilities of
error.

In balanced four-port detection, the outcome of the
measurement is given by the photocount difference be-
tween the two output arms of the beam-splitter. We have
seen in Section 2.1 that the difference counts statistics is
also equivalent to the signal field quadrature probability
distribution. The POM element associated with the mea-
surement outcome has been correspondingly derived. This
can be written as a difference count photon-number pro-
jector, when we assume that in the homodyne detection
apparatus the coherent signal field first undergoes an evo-
lution due to its interaction with the local oscillator field,
and is then effectively measured. Alternatively consider-
ing that there is no evolution of the signal field between
preparation and measurement, the measurement process
and the effect of the whole homodyning procedure can be
simply enclosed in a POM element written as a quadrature
field projector.

The retrodictive conditional probabilities have then
been derived, by using Bayes’ theorem, in terms of the
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output probability distributions describing the statistics
of the difference of photocounts registered at the two
output arms of the beam-splitter (in the case of perfect
detection). In conventional homodyne detection, where
the local oscillator field is assumed to be very much
stronger than the signal, we have seen that in the par-
ticular case where the mean number of photons in the
signal field is much smaller than one, the results are not
really satisfactory, and retrodicting the input state prob-
abilities does not give precise information on the nature
of the signal. Optimal discrimination between the mea-
sured output distributions occurs when the amplitudes of
the signal and local oscillator fields are the same. Con-
sequently deterministic results in the retrodiction process
can then be obtained, apart from when the recorded num-
ber of difference counts is zero.

In Section 3 we have provided a quantum-mechanical
description of the measurement of a coherent state per-
formed by means of the eight-port homodyne detection
apparatus. In the limit of strong local oscillator we have
seen in Section 3.2 that two field quadratures can be si-
multaneously measured, giving information on both the
amplitude and the phase of the signal, although (with re-
spect to the four-port detection) at the expense of addi-
tional noise in accordance with previous results [10,11].
In Section 3.3 we have presented a rigorous derivation of
the POM element that is often used [9,27] to describe the
effective abstract measurement resulting from the use of
this eight-port homodyne apparatus, given by a coherent
state projector. The retrodictive conditional probabilities
for input coherent signal bits, described by |α〉 or |−α〉,
have been found and briefly commented on at the end of
the section, by using Bayes’ theorem in conjunction with
the measured output distributions of the system written
in the phase-space representation. We have also pointed
out the similarity between the eight-port homodyne and
the heterodyne measurement processes.

The retrodictive approach, developed here for homo-
dyne detection, has the same advantages as in its use for
the study of optical information transfer by direct detec-
tion, considered previously [6]. Conventional theory takes
the viewpoint of the transmitter of information, so it re-
quires a determination of the behavior of input signals as
they propagate through the system to the receiver. The
corresponding calculations determine the distribution of
received output signals generated by known input signals.
However, in practice, the viewpoint of the recipient of in-
formation, who looks backwards through the system and
needs to determine the distribution of transmitted input
signals implied by known output signals, is of greater in-
terest. Both kinds of analysis, predictive and retrodictive,
are based on the same properties of the transmission sys-
tem but the relations between the two are nontrivial. The
calculations presented here provide the required results for
the main varieties of phase-sensitive detection in coherent
communications.
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